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Abstract

Bayes estimation of the reliability function for the inverse

Gaussian distribution is discussed. For the case that the mean lifetime

is known, Bayes estimators are obtained with Jeffreys' noninformative

prior and with the natural conjugate prior for the scale parameter.

In the case that both parameters are unknown, an estimator of reliability

is suggested which is based on the Bayes estimator obtained for the case

that the mean lifetime is known. This estimator is not Bayes but compares

favorably with the maximum likelihood and minimum variance unbiased

estimators as indicated by computer simulations.
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1. INTRODUCTION

The two-parameter inverse Gaussian distribution with probability density

function (pdf) in the form

f~[,) (/ 3) 22~
f(xluX) = (XI2nx3 exp [-X(x-p) 2 , x > 0, V > 0, X > 0, (1.1)

has been studied in the reliability or life testing context by several authors

[6, 9, 101. The parameters in (1.1) have more appealing physical interpretations

for life testing situations than other parametric forms of the pdf. The mean life

for the lifetime model (1.1) is p,and X is a shape parameter. The variance is

3 A so P is not a location parameter in the usual sense. Chhikara and Folks [61

state some advantages of using the inverse Gaussian distribution as a lifetime

model over the log-normal distribution, and the wide variety of shapes generated

by the pdf (1.1) makes it a competitor to other lifetime distributions. In

addition, the inverse Gaussian distribution arises as the first passage time dis-
a

tribution of a Brownian motion process [7], justifying its use as a duration time

or lifetime model on a physical basis. Several results have also been obtained

concerning tests for drift in Brownian motion processes (for example [5, 9, 13)).

Tweedie [15, 16] and Chhikara and Folks [3, 4, 6], among others, have studied

various sampling theory inferences concerning (1.1). Estimation for a three-para-

meter inverse Gaussian distribution was investigated recently by Padgett and Wei [121.

The cumulative distribution function (cdf) of (1.1) has been obtained in

closed form by Shuster [141 and Chhikara and Folks [6], and the survival function

or reliability In given in the form

R(tlpA) = ([( /t)-(1-t/ 1]

- exp(2) /p) *[- (X/t) 4 (l+t/p)), t > 0, (1.2)
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where 0 denotes the cdf of the standard normal distribution. The minimum

variance unbiased estimator of R(tlu,X) was derived by Chhikara and Folks [6]

and lower confidence bounds for (1.2) were given in [101. However, due to the

complicated nature of the expression (1.2), other inferences concerning the re-

liability seem to be difficult.

Recently, Banerjee and Bhattacharyya [I] presented a Bayesian analysis of

the inverse Gaussian distribution in a different parametric form than (1.1) (see

Johnson and Kotz [8) for other forms of (1.1)). As was stated in [1],

Bayesian inferences concerning reliability are extremely difficult and require

numerical integration to plot the posterior pdf or to determine HPD intervals

for reliability. However, Bayes estimation can be performed in come cases, and

it is the purpose of this note to present Bayes estimators of R(tlli,x) for the

case that the mean life p is known, which is reasonable in many reliability problems.

Vague priors as well as a conjugate family of prior distributions are used. In

the case that p and X are both unknown, an estimator of (1.2) is propdsed which,

as indicated by some Monte Carlo simulation results, is overall as good as the

minimum variance unbiased estimator or maximum likelihood estimator given in [6J

and is simpler to calculate than the minimum variance unbiased estimator. The

results bear a remarkable similarity to those for the two-parameter log-normal

model given by Padgett and Wei E11]. i

2. ESTIMATION OF RELIABILITY

For a random sample x - (xi, ... , x ) from the inverse Gaussian distribution

(1.1), the likelihood function is given by
n .3/2 2- n xt-21

1(1) a xH exp --+ Z X (2.1)
i-l 2 i-1

- ~ln
where Z x.. The Fisher information matrix has determinant, i-i
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i i 3 -11in0,01 (0' X) and hence, Jeffreys' vague prior (Box and Tiao [2]) is

3--
p(P,X) - (1 3)-, which when combined with the likelihood (2.1) does not produce

a tractable or proper posterior distribution. Also, following the vague prior

idea of Box and Tiao [2] and taking p(UIX)- constant and p(X) a A-l, mathemati-

cally intractable posterior distributions for estimating R(tlp,x) are obtained.

It is assumed here that V, the mean life, is known, and Jeffreys' noninformative

prior p(X) a A is used for X. In addition, the gamma family of distributions

is a natural conjugate family for X, and Bayes estimators of R(tlp,X) for this

case will be indicated.

For the improper prior p(X) X , the posterior distribution of A, given x,

is from (2.1)

p(AxL) K 1 X n 2(2)P(Ap) "K A-  exp[ E 2 (x /X (2.2)

where the constant K is given by

n 1 n 2K r ( _U)(/xi2)[2 r i ( x t  I

2UJ 1-1

Hence, p(AIA, p) is a gamma distribution of the form

p(AOJu) [r(a)aa - 1 X a- 1 exp(-X/8), X > 0,
n2

with a - n/2 and B - 2Y2/ X - 2/x 1. Then with respect to a squared-error
i-1

loss function, the Bayes estimator of A is X B 2 - p)2/Xi , which is
i-I

the same as the mle of A when P is known. For R(t II,X), with respect to squared-

error loss, the Bayes estimator for the improper prior is Y(t) - AR(t ii,A)Ix].

Thus, from (1.2), for each t > 0,

-i
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%(t) = EA L( (A/t)" (1-t/j)) I

- E [exp(2A/j1) 0(-(A/t)'2 (l+t/))i. (2.3)

To evaluate the first expected value in (2.3), Lemma 1 of Padgett and Wel

111] may be applied with c in that lemma equal to t-(l - t/). Thus,

EAt 4 ((A/t) 1 (l+t/,)) 1 - P[T2a < (1-t/)(00/t) 1 , (2.4)

where a and 8 are parameters of the posterior pdf p(Alx,V) defined previously

and T denotes a random variable having Student's t-distribution with v degrees

of freedom. The second expected value on the right-hand side of (2.3) is evaluated

similarly after absorbing the exponential term into the posterior density (2.2).

Again, by Lemma 1 of [111 with c --t (l+t/),

HA [exp(2A/p) 0( -(A/t)k (l+t/))]

-28/)'P{T 2 < - (l+t/2)a</(t(i-28))], (2.5)

Therefore, the Bayes estimator %(t) is given by (2.5) subtracted from (2.4).

This estimate may be easily computed since it involves only probabilities for

the t distribution.

If the gamma family of priors with parameters y and 6 in the form

p(X) - y-l exp(-X/6) is used for X, then the same kind of expected values are

obtained as in (2.3). Applying Lemma 1 of [11] again yields the Bayes estimator

of reliability as

RC(t) - PCT2* , ' C.(Y,/6,)

- [6 */( 6*- 2 /tj))y* P(T 2y* < c 2 [y*/(-2/0)}

where y* - y + n/2,
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S - +(2i 2)-I 2/× 2 I-

6) 6 (X-) x, c 1  t /1-t/), and c2-t (.+t/u)
1.1

These results bear a resemblance to those of the log-normal (or normal)

failure model obtained in [111 (see also [l). Also, it should be remarked

that for the noninformative prior p(ijX)= constant, p(A) - , estimates of

R(tllj,X) may be obtained by numerical integration, but a closed-form expression

for the estimator seems extremely difficult to obtain. If both X and P are

unknown, one may be tempted to use the mte, x , in the expressions (2.4) and

(2.5) to obtain an estimate of reliability RR(t). The effect of this is indicated

in the next section by some computer simulation results.

3. MONTE CARLO SIMULATIONS

Since direct comparisons of the behavior of various estimators of R(tjP,A)

are not feasible due to the mathematical complexity of the estimators, Monte Carlo

simulations were performed. The maximum likelihood (ML) and minimum variance

unbiased (MVU) estimators when V is known were compared with the corresponding

Bayes estimator (2.3). For several values of t, U, and X, 2000 samples of size

n (= 10, 20, 30) were generated and the average squared errors (ASE) and average

estimated reliability (AER) were computed for each estimator. Similar to the

results in (11], the Bayes estimator had an overall smaller mean squared error

than the ML and MVU estimators, as anticipated. For the case that p and X both

were unknown, the estimator %(t) suggested at the end of Section 2 (using (2.3)

with v replaced by x - ) was compared with the ML and MVU estimators given in [61

in the same kind of simulation procedure. Surprisingly, this estimator performed

as well as the MV) estimator in the sanse of average value and did not have a

uniformly larger ASE than either the ML or MVU estimator. Some of the results of

the simulations in the latter case are given in Table I.
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4. AN EXAMPLE

As an example, the estimator R(t) as well as the ML and MVU estimators

were used to estimate reliability for several values of t from the n-46 repair

time observations (in hours) for an airborne communication transceiver (1 171 and

[6 1). Chltkara and Folks 6 j obta ined a good fIt to this (fata by the Inverse

Gatssian distribution with j = x - 3.61 and X = 1.704. ThV OstImates of

reliability are given in Table 2.

Table 2. Estimates of Reliability

t 1 2 3 5 10 15

(t) 0.6934 0.4578 0.3305 0.1984 0.0789 0.0388

MLE 0.6986 0.4607 0.3325 0.1996 0.0791 0.0386

MVUE 0.6951 0.4618 0.3368 0.2057 0.0829 0.0396

5. CONCLUSION

For the case that the mean lifetime p in the inverse Gaussian model is

known, the posterior distribution of X is easily obtained for the Jeffreys

prior and the natural conjugate prior as indicated by Banerjee and Bhattacharyya

[1]. For this case the Bayes estimators of reliability given in Section 2

resemble the analogous results in the log-normal (or normal) model. If both

V and X are unknown, the Bayes solution for reliability in a compact form seems

to be extremely difficult, at least for the parametric form (1.1). It also seems

to be even more difficult to obtain a Bayes estimator for the failure rate

function or mean residual life. Hence, an estimator, RB(t), of reliability was

proposed for this case in Section 2, and its properties were indicated as a result

of computer simulations. For other Bayesian inferences on reliability, numerical

integrations must be performed in any actual application to obtain the posterior

distribution of reliability.
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